A Simple Proof of Hardy-lieb-thirring Inequalities
نویسنده
چکیده
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).
منابع مشابه
Hardy-lieb-thirring Inequalities for Fractional Schrödinger Operators
We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2 is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and,...
متن کاملEquivalence of Sobolev Inequalities and Lieb–thirring Inequalities *
The Sobolev and Lieb–Thirring (LT) inequalities seem to be very different. The former is a kind of uncertainty principle, which, effectively, states how large a negative potential −V must be for the Schrödinger operator H = −∆ − V to have a bound state. The latter, which was originally introduced to prove the stability of matter [22], estimates the sum of all the negative eigenvalues of H and, ...
متن کاملMagnetic Lieb-Thirring inequalities with optimal dependence on the field strength
The Pauli operator describes the energy of a nonrelativistic quantum particle with spin 12 in a magnetic field and an external potential. Bounds on the sum of the negative eigenvalues are called magnetic Lieb-Thirring (MLT) inequalities. The purpose of this paper is twofold. First, we prove a new MLT inequality in a simple way. Second, we give a short summary of our recent proof of a more refin...
متن کاملConnection between the Lieb–Thirring conjecture for Schrödinger operators and an isoperimetric problem for ovals on the plane
To determine the sharp constants for the one dimensional Lieb– Thirring inequalities with exponent γ ∈ (1/2, 3/2) is still an open problem. According to a conjecture by Lieb and Thirring the sharp constant for these exponents should be attained by potentials having only one bound state. Here we exhibit a connection between the Lieb–Thirring conjecture for γ = 1 and an isporimetric inequality fo...
متن کاملLieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems
This paper is devoted to inequalities of Lieb-Thirring type. Let V be a nonnegative potential such that the corresponding Schrödinger operator has an unbounded sequence of eigenvalues (λi(V ))i∈N∗ . We prove that there exists a positive constant C(γ), such that, if γ > d/2, then
متن کامل